Aim: Define the physiological boundaries at which microbial H2S production becomes harmful to the host by revealing the sulfur source-dependent physiology of H2S-producing key human gut species under different biotic (varying microbial complexity) and abiotic conditions (oxidative stress, diet).
Approach: Physiological experiments with human gut isolates (mono- and co-cultures) and in vitro incubations of human feces. Diet-experiments with gnotobiotic mice having a defined microbiota with or without sulfidogens. Microbiota and metabolic analyses by amplicon sequencing, RT-qPCR, FISH, (meta)transcriptomics, metabolite and redox potential measurements, microsensors, and stable isotope probing. Analyses of gut barrier function and host sulfur metabolism.
Relevance: This project will show how dietary nutrients, redox conditions, and syntrophic interactions determine microbial sulfidogenesis in the gut and impact the host.
Student: Julia Krasenbrink
Faculty: Alexander Loy (PI), David Berry, Monika Bright, Jillian Petersen, Thomas Rattei
Funding: FWF doc.fund project MAINTAIN
Selected Publications:
Barton, L. L., Ritz, N. L., Fauque, G. D. & Lin, H. C. Sulfur Cycling and the Intestinal Microbiome. Dig. Dis. Sci. 62, 2241–2257 (2017).
Wang, R. Physiological Implications of Hydrogen Sulfide: A Whiff Exploration That Blossomed. Physiol. Rev. 92, 791–896 (2012).
Brugiroux, S., Beutler, M., Pfann, C., Garzetti, D., Ruscheweyh, H.-J., Ring, D., Diehl, M., Herp, S., Lötscher, Y., Hussain, S., Bunk, B., Pukall, R., Huson, D. H., Münch, P. C., McHardy, A. C., McCoy, K. D., Macpherson, A. J., Loy, A., Clavel, T., Berry, D. & Stecher, B. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat Microbiol 2, 16215 (2016).